The University of Texas at Arlington

Lecture 2 PIC Overview

CSE 3442/5442 Embedded Systems I

Based heavily on slides by Dr. Gergely Záruba and Dr. Roger Walker

Overview of PIC18 Family

- Microchip Technology Inc. (1989)
 - Introduced microcontrollers called PIC
 - Peripheral Interface Controller
 - 8-bit MCUs
 - PIC10, PIC12, PIC16, PIC18
 - -16-bit MCUs
 - PIC24
 - -32-bit MCUs
 - PIC32

-www.Microchip.com

PIC18F452

Datasheet Link

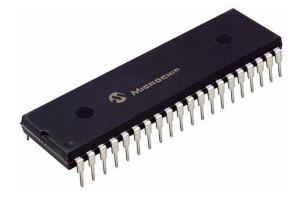
- https://www.microchip.com/wwwproducts/en/en010296
- Or
- <u>http://omega.uta.edu/~nbb0130/misc_files/PIC18FXX2%20Data</u>
 <u>%20Sheet.pdf</u>

1.0 DEVICE OVERVIEW

This document contains device specific information for the following devices:

• PIC18F242 • PIC18F442

TABLE 1-1:

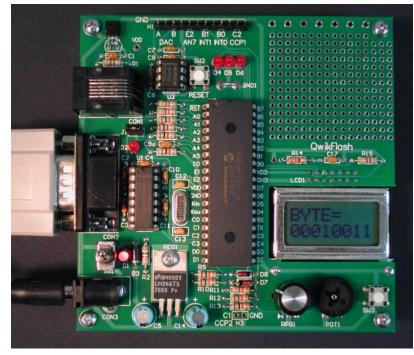

• PIC18F252 • PIC18F452

These devices come in 28-pin and 40/44-pin packages. The 28-pin devices do not have a Parallel Slave Port (PSP) implemented and the number of Analog-to-Digital (A/D) converter input channels is reduced to 5. An overview of features is shown in Table 1-1.

DEVICE FEATURES

The following two figures are device block diagrams sorted by pin count: 28-pin for Figure 1-1 and 40/44-pin for Figure 1-2. The 28-pin and 40/44-pin pinouts are listed in Table 1-2 and Table 1-3, respectively.

Features	PIC18F242	PIC18F252	PIC18F442	PIC18F452
Operating Frequency	DC - 40 MHz			
Program Memory (Bytes)	16K	32K	16K	32K
Program Memory (Instructions)	8192	16384	8192	16384
Data Memory (Bytes)	768	1536	768	1536
D-1- EEDDOM M	050	050	050	050

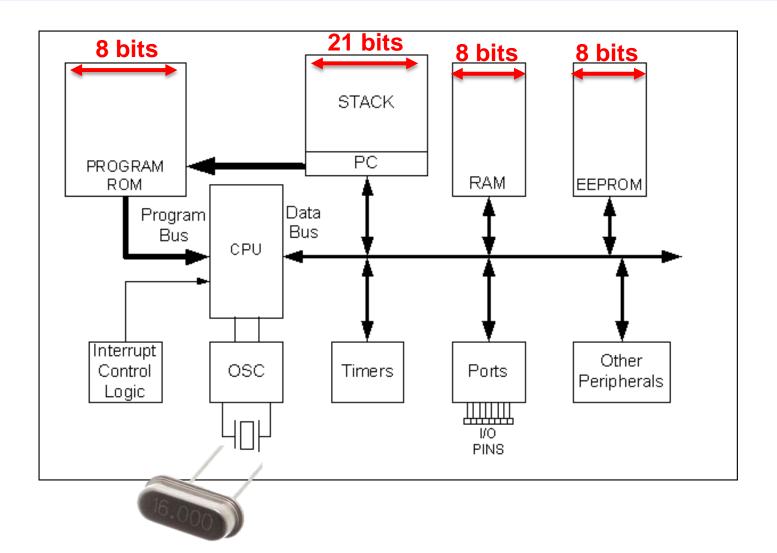

8-bit Microchip Families

- Microchip is one of the main suppliers of 8-bit microcontrollers
- PIC families include 10xxx, 12xxx,14xxx, 16xxx, 17xxx, and 18xxx
- 12xxx/16xxx have 12-bit & 14-bit instructions
- PIC18xxx have 16-bit instructions
- Mouser Link

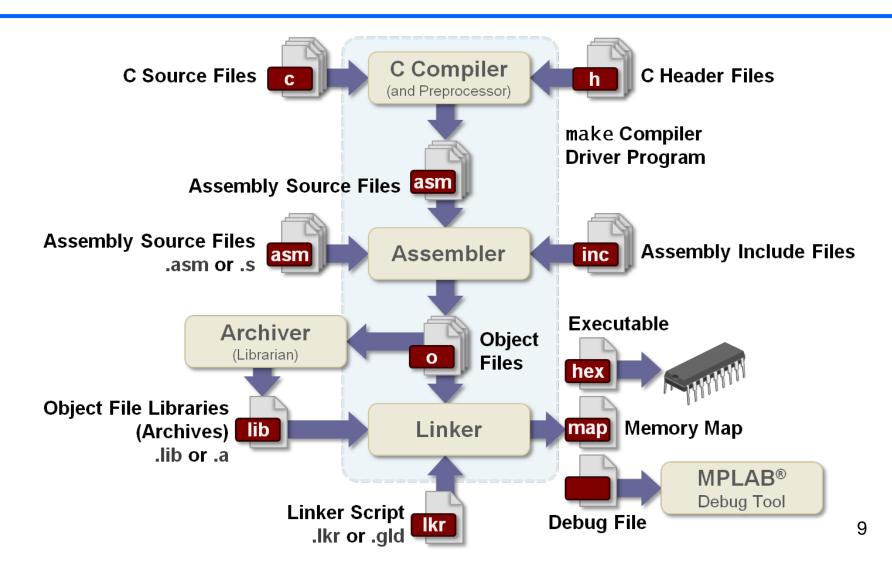
QwikFlash (Kit Used in Lab)

- QwikFlash Development Kit No. 3
 - Expanded Kit with breadboard 400 and Stand
 - <u>http://www.microdesignsinc.com/qwikflash/index.htm</u>
 - http://www.microdesignsinc.com/picbook/
 - Schematic Link

QwikFlash

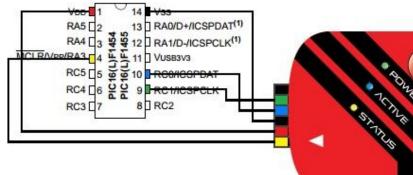


- ROM program or code ROM
 - PIC18 can have up to 2 megabytes (2M) of ROM
- UV-EPROM for program memory
 – must have special eraser/programmer (burner ~20 minutes to erase)
- Flash memory PIC18<u>F</u>458 use for program development, can reprogram again and again
- OTP Version PIC16<u>C</u>452 use for final production version, one time programmable (ROM)
- **EEPROM** electrically erasable PROM, additional "permanent" memory



Simplified View of a PIC Microcontroller

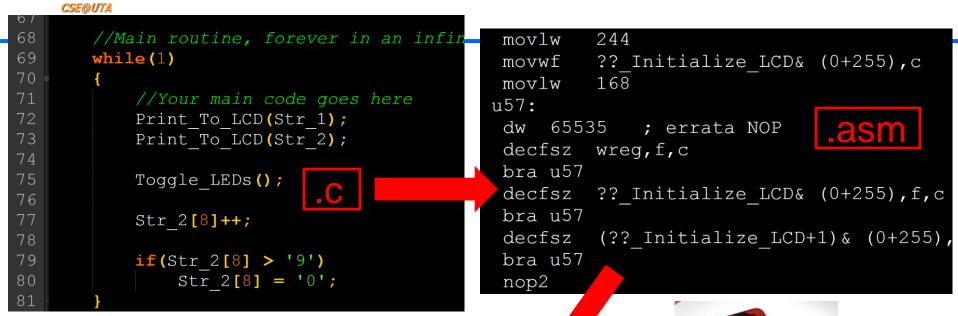
Software Program Flow




Programming a PIC

• PicKit 3 (ICSP)

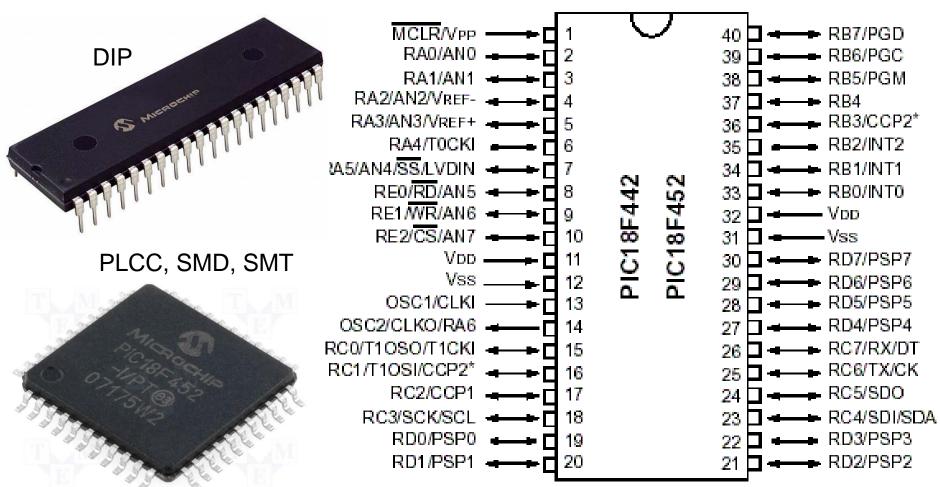
Socket
 Programmer



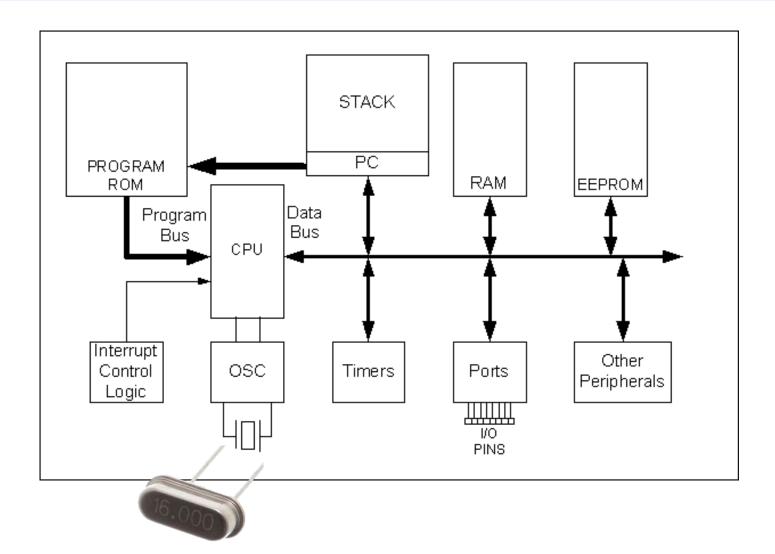
Microchip Tecnology Inc.

Software Program Flow

:100760000FEC03F01200FFFFFFF9EEC03F0 :10077000156E060E166E57EC03F0010E156E060E82 :10078000166E57EC03F0FFFFED7C02020202020207C :10079000202020008020202020202020202000FFFF7B :02000040020DA :08000000FFFFFFFFFFFFFFFFFF00 :020000040030CA :0E000000FF220D0EFF0181FF0FC00FE00F4029 :0000001FF

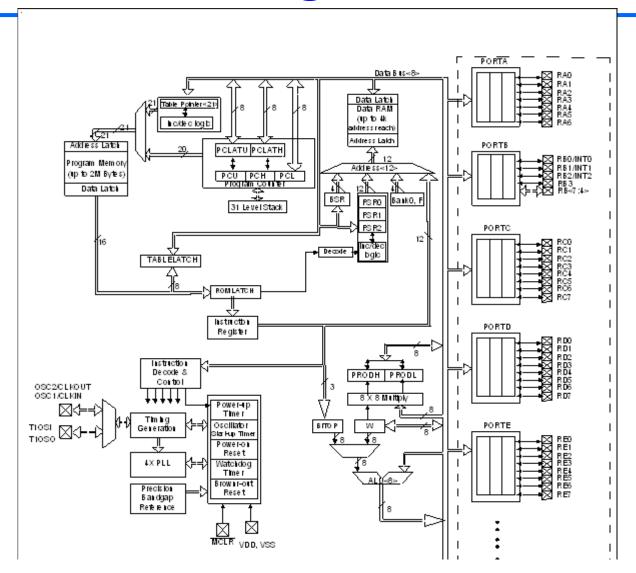


- PIC18 one of the higher performers of the Microchip's PIC families. There is now both a 32 bit PIC32 family and DSPIC (16 bit) with high performance.
- PIC families come in 18 to 80 pin packages.
- Select family based on performance, footprint, etc., needed, use selection guide: <u>http://www.microchip.com/stellent/idcplg?IdcSer</u> <u>vice=SS_GET_PAGE&nodeId=2661</u>

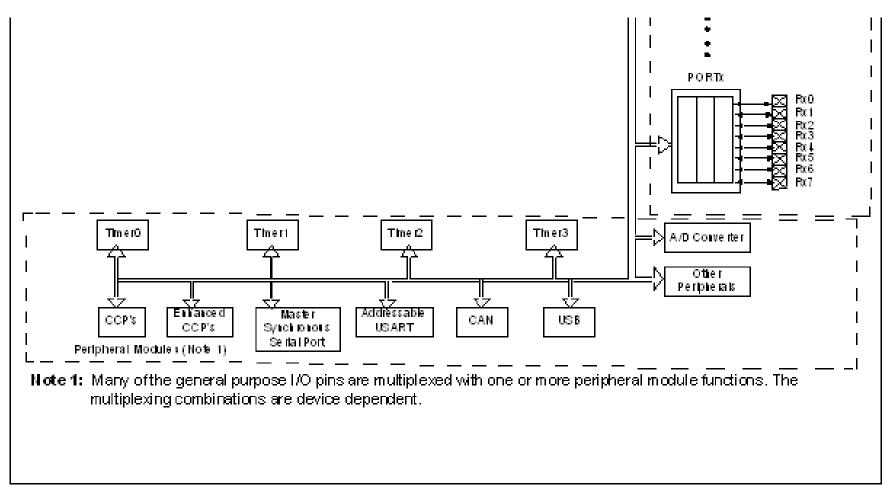


- RISC architecture
- On-chip program ROM, data RAM, data EEPROM, timers, ADC, USART, and I/O Ports

• ROM, data RAM, data EEPROM, and I/O ports sizes varies within PIC18 family



Simplified View of a PIC Microcontroller


Figure 1-3. PIC18 Block Diagram

16

Figure 1-3. PIC18 Block Diagram (continued)

What is a **Register**?

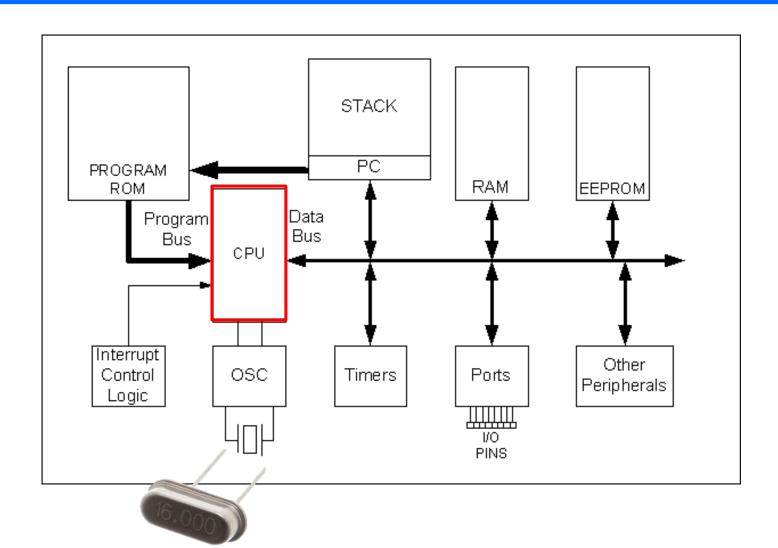
Register

A place inside the PIC that can be written to, read from, or both (8-bit numbers)

TABLE 9-4: SUMMARY OF REGISTERS ASSOCIATED WITH PORTB

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on All Other RESETS
PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxx xxxx	uuuu uuuu
LATB	LATB Data Output Register					xxxx xxxx	uuuu uuuu			
TRISB	PORTB Data Direction Register					1111 1111	1111 1111			
INTCON	GIE/ GIEH	PEIE/ GIEL	TMR0IE	INTOIE	RBIE	TMR0IF	INTOIF	RBIF	0000 000x	0000 000u
INTCON2	RBPU	INTEDG0	INTEDG1	INTEDG2	_	TMR0IP	—	RBIP	1111 -1-1	1111 -1-1
INTCON3	INT2IP	INT1IP	_	INT2IE	INT1IE	_	INT2IF	INT1IF	11-0 0-00	11-0 0-00

Legend: x = unknown, u = unchanged. Shaded cells are not used by PORTB.



- <u>Working Reg</u>ister is the same as the accumulator in other microprocessors
- Used for all arithmetic/logic instructions
 - Avoids use of main memory
 - Close as possible to the ALU within the CPU
- Can only hold 0-255 dec (0-FFh)
 - Truncates larger values and causes warning
 - 1001 1101 1100 = 2,524dec = 9DCh
 - 0000 1101 1100 = 220dec = DCh

WREG is in the CPU

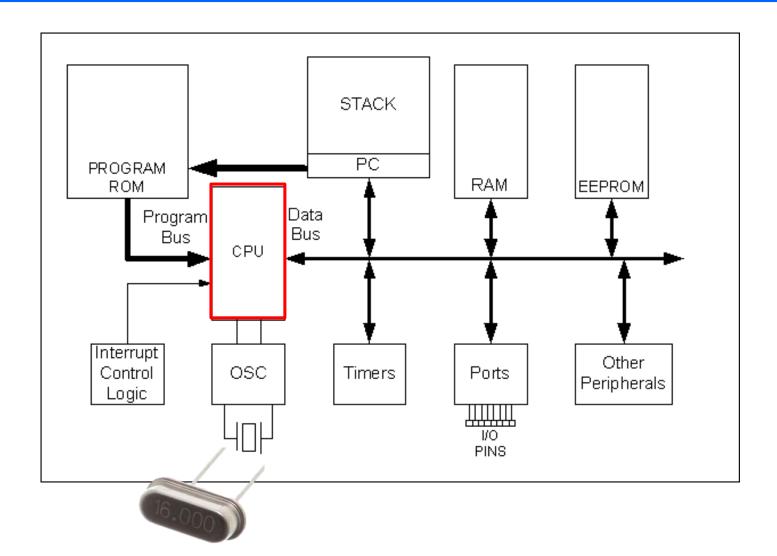
Ch. 2 - PIC Architecture & Assembly Language Programming

WREG – 8 bit register in PIC (Working Register) – used for most instructions
 MOVLW K

Move ("MOV") the number ("L" for "literal") K into the working register ("W")

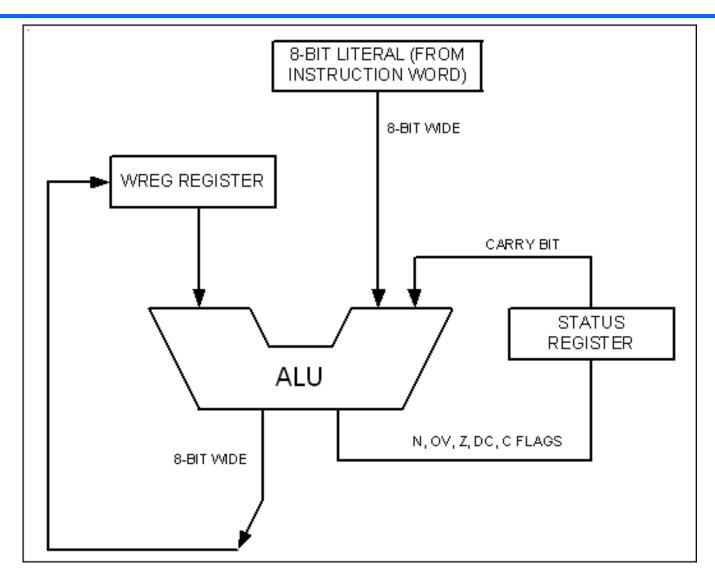
MOVLW 0xA

That is, load W with the value 0xA Note: 'WREG' sometimes shortened to 'W'



- MOVLW K; move literal value K into WREG
- Once again K is an 8 value 0-255 decimal or 00-FF in hex

 Ex.
 MOVLW 25H; move 25H (0x25) into WREG (WREG = 25H)



ALU is in the CPU

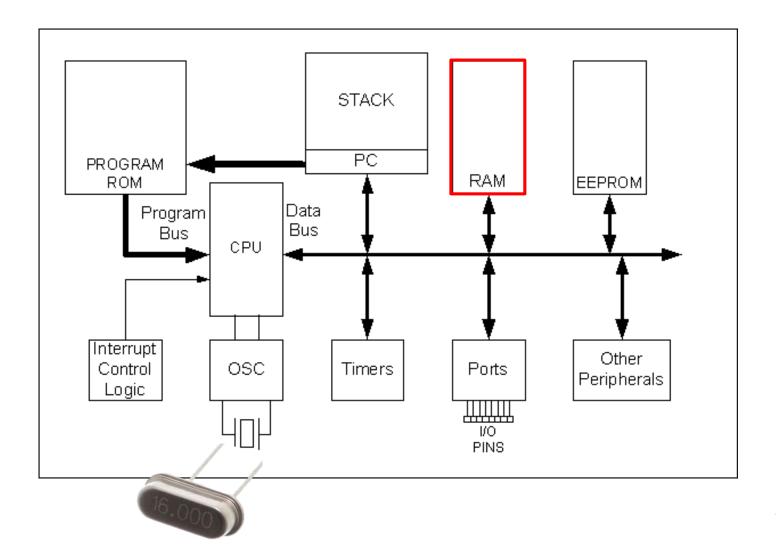
PIC WREG and ALU Using Literal Value

24

Move and Add Instructions

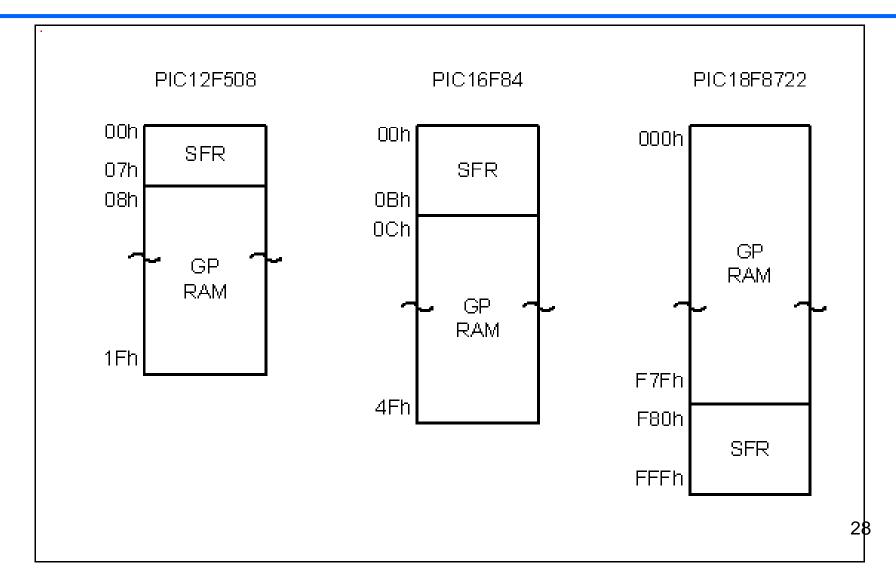
- MOVLW 12H
- ADDLW 16H
- ADDLW 11H
- ADDLW 43H

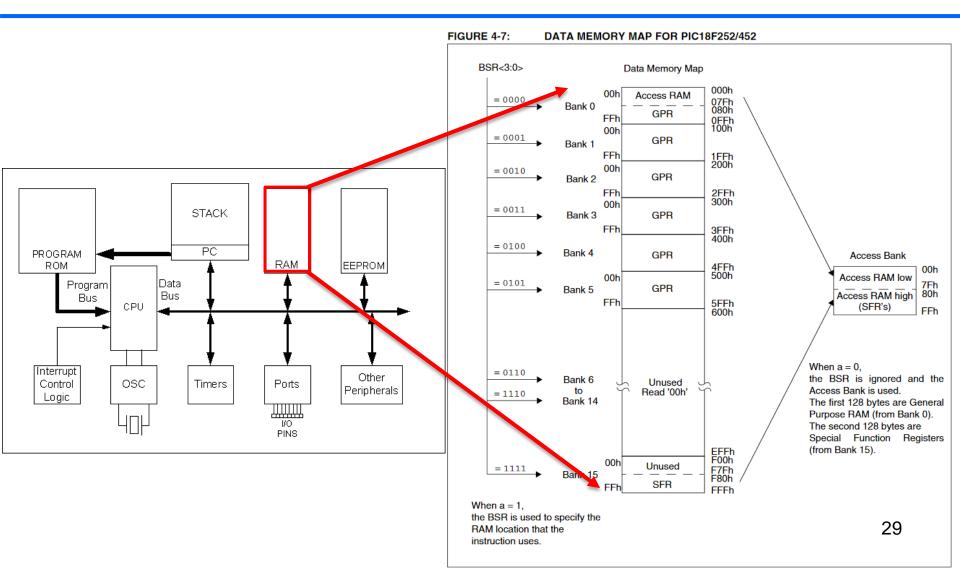
;load value 12H -> WREG ;add 16H to WREG ;add 11H to WREG ;add 43H to WREG



FILE REGISTER

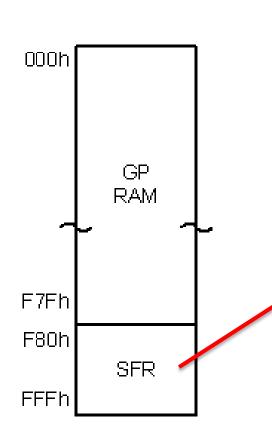
• File Register = Data Memory (RAM)


- Read/write memory used by CPU for data storage
- Varies from 32 bytes to thousands depending on chip size (family)
- Can perform arithmetic/logic operations on many locations of File Register data
- Divided into two sections:
 - Special Function Registers (SFR)
 - General Purpose Registers (GPR) or (GP RAM)



File Registers of PIC12, PIC16, and PIC18

File Register (Data RAM) for the PIC18F452



FILE REGISTER cont.

• SFR – special functions (8-bit wide regs)

- Functionality of each is fixed in design
- Usually for all of the peripherals
 - ALU status
 - Timers
 - Ex: the more timers the more SFR in a PIC
 - Serial communications
 - I/O Ports
 - A/D

Special Function Registers of the PIC18 Family

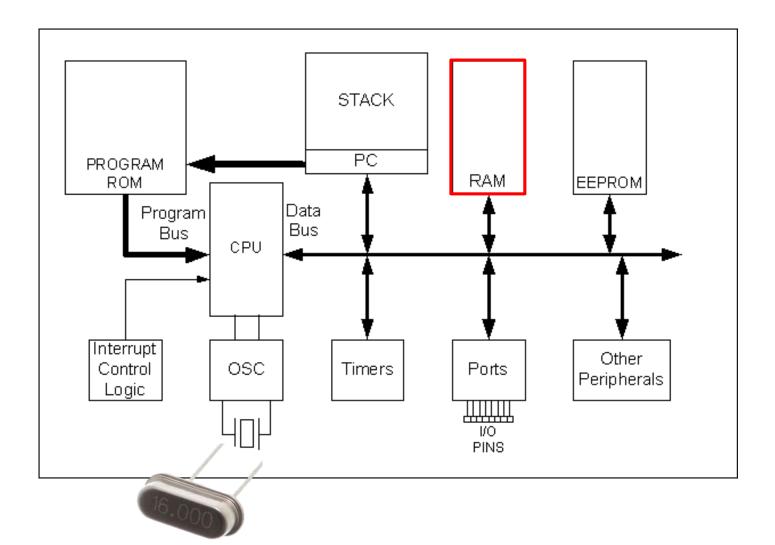
F80h	PORTA
F81h	PORTB
F82h	PORTC
F83h	PORTD
F84h	PORTE
F85h	
F86h	
F87h	
F88h	
F89h	LATA
F8Ah	LATB
F8Bh	LATC
F8Ch	LATD
F8Dh	LATE
F8Eh	
F8Fh	
F90h	
F91h	
F92h	TRISA
F93h	TRISB
F94h	TRISC
F95h	TRISD
F96h	TRISE
F97h	
F98h	
F99h	
F9Ah	
F9Bh	
F9Ch	
F9Dh	PIE1
F9Eh	PIR1
F9Fh	IPR1

FAOh	PIE2
FA1h	PIR2
F A2h	IPR2
FA3h	
F A4h	
FAGh	
FA6h	
FA7h	
F A8h	
FA9h	
FAAh	
FABh	RCSTA
FACh	TXSTA
FADh	TXREG
FAEh	RCREG
FAFh	SPBRG
FBOh	
FB1h	T3C ON
FB2h	TMR3L
FB3h	тмrзн
F B4h	
F B5h	
F B6h	
F 87 h	
F B8h	
F B9h	
FBAh	CCP2CON
FBBh	CCPR2L
FBCh	CC PR2H
FBDh	CCP1CON
FBEh	CCPR1L
FBFh	CC PR 1H

FCOh	
FC1h	ADC ON1
FC2h	ADCONO
FСЗh	ADRESL
FC4h	ADRESH
F C5h	SSPC ON2
F C6h	SSPC ON1
FC7h	SSPSTAT
F C8h	SSPADD
F C9h	SSPBUF
FCAh	T2CON
FCBh	PR2
FCCh	TMR2
FCDh	T1CON
FCEh	TMR 1L
FCFh	TMR1H
FDOh	RCON
FD1h	WDTCON
F D2h	LVDCON
FDЗh	OSCCON
F D4h	
FD5h	TOCON
FD6h	TMROL
FD7h	TMROH
F D8h	STATUS
F D9h	FSR2L
FDAh	FSR2H
FDBh	PLUSW2
FDCh	PREINC2
FDDh	POSTDEC2
FDEh	POSTINC2
FDFh	IN DF2

FEOh	BSR	
FE1h	FSR1L	
FE2h	F SR 1H	
FE3h	PLUSW1	~
FE4h	PREINC1	~
FE5h	POSTDEC1	*
FE6h	POSTINC1	~
FE7h	IND F1	*
FE8h	WREG	
FE9h	FSROL	
FEAh	FSROH	
FEBh	PLUSWO	*
FECh	PREINCO	*
FEDh	POSTDECO	~
FEEh	POSTINCO	*
FEFh	IND FO	~
F FOh	IN TCON3	
FF1h	IN TCON2	
F F2h	INTCON	
FFЗh	PRODL	
FF4h	PRODH	
F F5h	TABLAT	
F F6h	TBLPTRL	
FF7h	TBLPTRH	
F F8h	TBLPTRU	
F F9h	PCL	
FF Ah	PCLATH	
FFBh	PCLATU	
FFCh	STKPTR	
FFDh	TOSL	Í
FFEh	TOSH	
FFFh	TOSU	Í

* - These are not physical registers.


31

FILE REGISTER – cont.

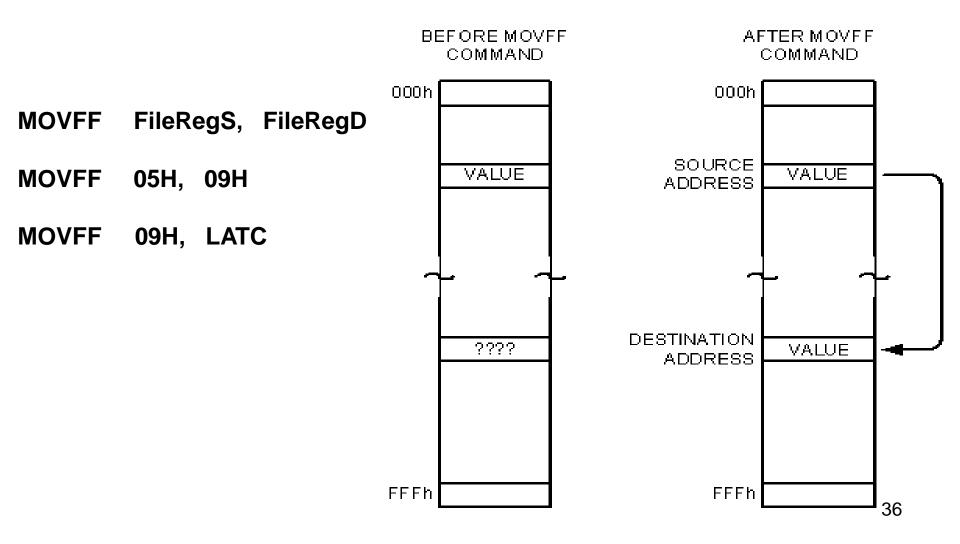
- **GPR general-purpose** (8-bit wide regs)
 - RAM locations used for ANY data storage and scratch pad as long as it's 8 bits (data RAM size same as GFR size)
 - Larger GPR = more difficult to manage in ASM
 - C compilers now handle management/addressing
- GPR ≠ EEPROM
 - GPR used by CPU for "internal" data storage
 - EEPROM considered "add-on" memory

File Registers, cont.

- PIC File Register has max 4K or 000-FFFH
 Addresses (locations) are 12-bit wide
- Divided into 16 banks of 256 bytes
- All PIC's have at least one bank...

– Access Bank

 The access bank divided into 2 sections of 128 bytes, SFR and GPR



PIC18 File Register and Access Bank

- Bank switching required (as only 256 bytes are addressable) in File Registers if using more than 256 bytes:
- MOV **WF** used to copy from work register into file register:
 - MOVLW 12H ; 12H -> WREG
 - MOVWF 16H ; (WREG) -> File Register 16H
 - MOVWF PORTC ; (WREG) -> PORTC (F8BH)

Moving Data Directly Among the fileReg Locations

Choosing Location to Store Result

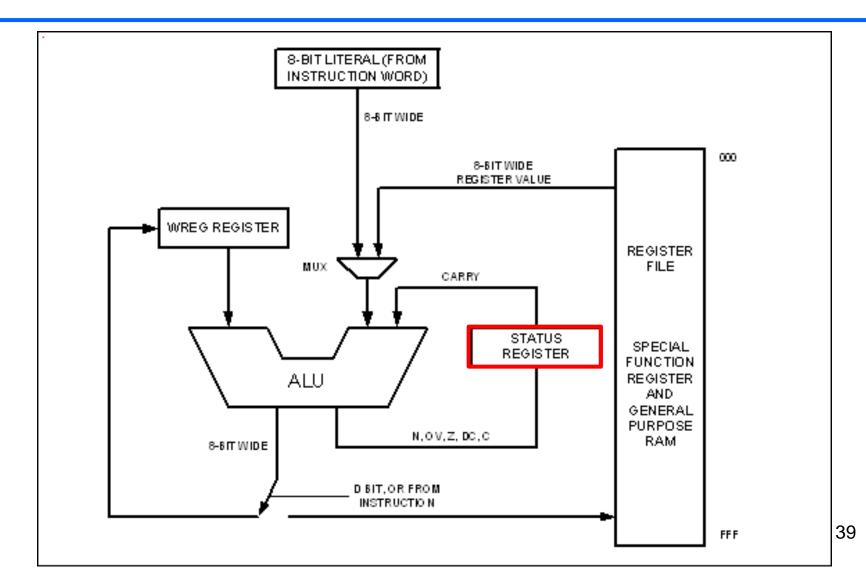
• **ADDWF fileReg, D**; (D = Destination Bit)

- Contents of WREG added to contents of fileReg address location
 - If D = 0, result placed in WREG
 - If D = 1, result placed in fileReg location

e.g., **ADDWF 16H, 0**; add the value contained in 16H to the value of W (thus store in W)

e.g., **ADDWF PORTC, 1**; add the value contained in W to the value of PORTC/F82H (thus store in F82H/PORTC's IO Pins)

Add with CARRY or Not


• **ADDWF fileReg, d** ;ADD WREG & fileReg

- $-W + F \rightarrow d$
 - If d = 0, result put in WREG
 - If d = 1, result put in F (location)

• ADDWFC fileReg, d ;ADD WREG & fileReg & Carry

- $-W + F + C \rightarrow d$
 - If d = 0, result put in WREG
 - If d = 1, result put in F (location)

Bits of Status Register

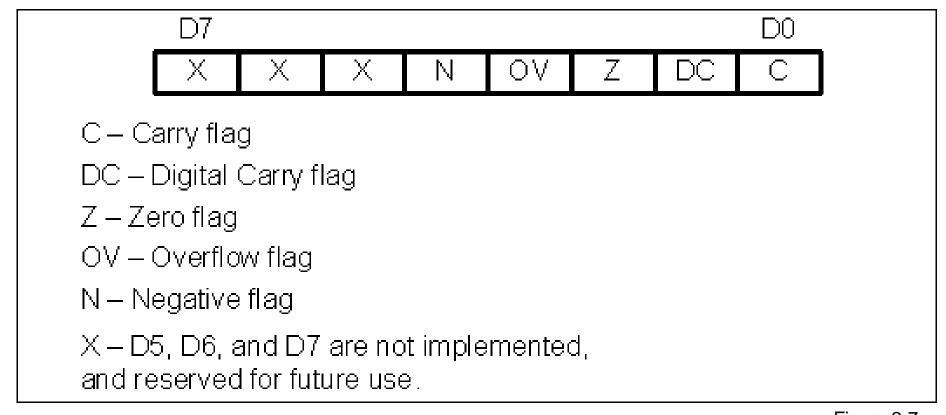
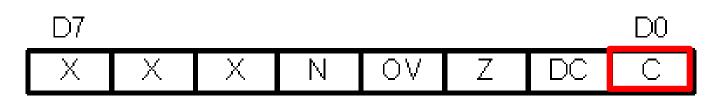
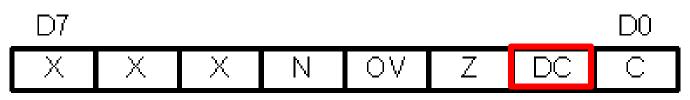
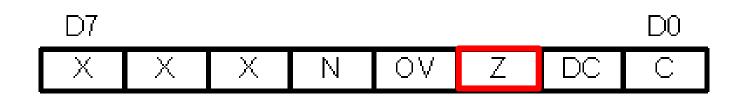
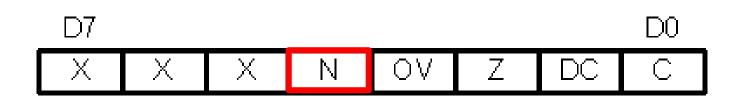



Figure 2-7


- C Flag is set (1) when there is a "carry out" from the D7 bit
 - Can be set by an ADD or SUB
 - 1101 1010
 - + 1010 1111
 - =<u>1 1</u>000 1001


- DC Flag is set (1) when there is a "carry" from the D3 to D4 bits
 - Can be set by an ADD or SUB
 - 1101 1010
 - + 1010 1111
 - = 1 100<u>0 1</u>001
 - Used by instructions that perform BCD arithmetic

• Z Flag indicates if the the result of an arithmetic or logic operation is 0


- OV Flag is set (1) when the result of a signed number operation is too large
 - The numerical result overflows/overtakes the sign bit of the number
- Usually used to detect errors in signed operations

N Flag is set (1) when the result of an arithmetic operation is less than zero
 If D7 bit = 0, N = 0, positive result

- If D7 bit = 1, N = 1, negative result

Flags Affected Following Execution of Most Instructions

- See Table 2-4. on page 60 of textbook
- ADDLW can affect C, DC, Z, OV N
- ANDLW can affect Z
- MOVF can affect Z
- Move instructions (except for MOVF) will not affect any status bits

ADDLW Example

- MOVLW 38H
- ADDLW 2FH

38H	0011 1000	
+ <u>2FH</u>	0010 1111	
67H	0110 0111	WREG = 67H
C = ?		
DC = ?		
Z = ?		

ADDLW Example

- MOVLW 38H
- ADDLW 2FH

- +<u>2FH 0010 1111</u>
 - 67H 0110 0111 WREG = 67H
- C = 0 no carry out from bit 7
- DC = 1 carry out from bit 3 to 4
- Z = 0 WREG has value other than zero after addition

ADDLW Example cont.

- MOVLW 9CH
- ADDLW 64H

9CH	1001 1100
+ <u>64H</u>	0110 0100
100H	0000 0000 WREG = 00H
C = ?	
DC = ?	
Z = ?	

ADDLW Example cont.

- MOVLW 9CH
- ADDLW 64H

Z = 1	WREG has value of zero after addition
DC = 1	carry out from bit 3 to 4
C = 1	carry out from bit 7
100H	0000 0000 WREG = 00H
+ <u>64H</u>	0110 0100
9CH	1001 1100

- BC
- BNC
- BZ
- BNZ
- BN
- BNN
- BOV
- BNOV

Branch if C = 1 (carry, positive) Branch if $C \neq 1$ Branch if Z = 1 (zero) Branch if $Z \neq 1$ Branch if N = 1 (negative) Branch if $N \neq 1$ Branch if OV = 1 (overflow, 2s cmp) Branch if $OV \neq 1$

• Read Chapter 0-2 of textbook

Download:

- MPLAB X IDE (v5.05)
 - http://www.microchip.com/mplab/mplab-x-ide
- XC8 Compiler (v2.00)
 - <u>http://www.microchip.com/mplab/compilers</u>

Scroll to the bottom of the pages and click the "Downloads" tab. Pick the install for your OS.